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Dynamical mean-field approximation for a pair contact process with a particle source
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The one-dimensional pair contact process with a particle source is studied by using dynamical cluster
mean-field approximations with sites upre-12. The results obtained for different levels of approximation
become convergent especially for 6 and allow us to derive reliable extrapolations to the limit . At the
zero source limit, the critical point exhibits a discontinuity whose magnitude vanishes withCbherent
anomaly analysis of the data supports the conclusion that the vanishing of the order parameter and the density
of isolated particles have the same critical behavior. In contrast to an earlier prediction, the present approxi-
mation does not support the existence of critical behavior in the inactive phase where the frozen density of
isolated particles depends on the initial state.
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The study of phase transitions from active fluctuatingextrapolations to the limih—occ. Using this large number of
phases into absorbing states has attracted considerable intdata f=2-12 we can also improve the predictions of the
est in the last decadgl,2]. The static exponents of these coherent anomaly metha@AM) [7] when considering the
phase transitions belong frequently to the directed percolaeritical exponents around the transition point. Furthermore,
tion (DP) universality class; however, there are also ex-we can study the frozen density of the isolated particle con-
amples of other universality classgd. Open questions are centration when the system evolves toward the inactive
related to the necessary conditions that can destroy this rgghase[9].
bust universal behavior. One of the simplest models showing To identify the transition point we have evaluated fhe
static DP behavior is the pair contact procéBEP which  dependence of the density of pairs of partigleghenceforth
was proposed to realize a system involving infinitely manyconsidered as an order paramgtas well as the density of
absorbing statef4]. Recently, Dickmaret al. introduced a isolated particlep;. The transition point is determined by
modified PCP model to explore the robustness of the DRhe zero point op, for h=0 and by the breaking point of the
transition[5]. In this model, each site of the one-dimensionalfunction p,(p) for h>0. This latter criterion was particu-
lattice is either vacant or occupied by a single particle. Alarly useful because of the extremely low valuemfin a
(randomly chosenpair of nearest-neighbor particles is anni- large interval ofp.
hilated with a probabilityp or an additional particle is cre- We shall not describe the details of the mean-field tech-
ated around the given pair with a probability-D if itis not  nique because it has already been applied and demonstrated
forbidden by double occupancy. In the extended model, affor the PCP model by several authors previouh9,10.
external particle source is introduced that attempts to inseiThe derivation of the hierarchy of equations of motion for
isolatedparticles with a raté. This system exhibits an active the configuration probabilities on thesite clusters becomes
phase wherp is smaller than a critical valup.. For p  complicated for largen. The technical difficulties increase
=p. the system evolves into a frozef@bsorbing state  drastically when enlarging the size of the clusters. Tradition-
where the nearest-neighbor pairs are absent. Further detadfly, the set of equations of motion is solved numerically in
of the model can be found in Rg6K]. This extended model the stationary states. Despite the slow convergency toward
was studied by Monte Carl@MC) simulations and the dy- the stationary solution for large, the numerical integration
namical cluster mean-field approximation for quite largeof the master equations seems to be a more efficient method
cluster sizegranged fromn=2 to 6). Some disturbing be- to find the stationary probability of configurations than the
haviors, however, remained unsolved. For example, the anaraditional Newton-Raphson method. Using the numerical in-
lytical predictions do not tend monotonically toward the MC tegration method we determined all the configuration prob-
results forh>0 when the cluster size is increased. Further-abilities appearing on the 12-site clustgks an example, to
more, the analytical results shows a discontinuity in theget a data point in the last row of Table | requires four weeks
variation of the critical poinp, if h— 0. This observation is running on a personal computeit is worth mentioning that
surprising because the present approximation has proved tery recently this method was used successfully for the con-
be satisfactory in many cases fo<6 [6]. It is expected that sideration of a stochastic sandpile mofiEd].
further increase of the cluster size will resolve these discrep- Our results are plotted in Figs. 1-3. Table | summarizes
ancies. the predictions at all levels of approximations for and for

In this Brief Report, we discuss the results of dynamicalthe density of isolated particleg,,; at the critical point at
mean-field approximations for cluster sizes as largenas different values oh.
=12. The present approach allows us to give more accurate Figure 1 demonstrates clearly that the predictionspior

become monotonically convergent foe=6. The linear fit
for n>5 data givesp.=0.075 in close agreement with the
*Electronic address: szolnoki@mfa.kfki.hu MC data @} “=0.077). The same good convergence can be
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TABLE |. Results ofn-site approximations.

n pe(h=0) pc(h=0.1) pc(h=10)  ¢(h=0)  #(h=0.1)  $(h=10)
2 0.2 0.66667 0.6667 0 0.5 0.5
3 0.12774 0.1820 0.182 0.23 0.4615 0.4615
4 0.11846 0.1502 0.1573 0.21665 0.5 0.5
5 0.11757 0.1440 0.1579 0.17989 0.4580 0.477
6 0.10272 0.1166 0.1353 0.22393 0.4383 0.4482
7 0.10069 0.1148 0.1323 0.21840 0.4450 0.4511
8 0.09692 0.1094 0.1265 0.22121 0.4390 0.4476
9 0.09387 0.1044 0.1224 0.22879 0.4356 0.4442
10 0.09218 0.1027 0.1198 0.22838 0.4351 0.4438
11 0.09048 0.1004 0.1175 0.23120 0.4325 0.4418
12 0.08925 0.0989 0.1156 0.23269 0.4316 0.4416
s 0.075 0.080 0.095 0.242 0.422 0.433
Simulation 0.077090) 0.08627215) 0.09785 0.24@) 0.4211) 0.433

obtained in the presence of external source. Comparisons of A distinct improvement of convergency can also be ob-

the linear fit with the MC data are also listed in TableviC

data are taken from Reff5]).

Surprisingly, although the-site approximations converge
to the MC data aarbitrary values ofh, a jump can be ob-

served inp; when considering the limih—0 for all n. The

magnitude of this jump is defined as

Ap"=lim pg(h)—pg(h=0).
h—0

D

The inset of Fig. 1 showa p" for different levels of approxi-

mation. This log-log plot suggests that the jump decreases

a power law function, i.e.Ap"cn~® with

an exponentw

~1.666. The explanation of this value af remains to be

clarified. This discontinuity ofAp" may also be observed for

higher dimension versions of the mod&p].

served for higher values af if we consider the density of
isolated particlesp,,; at p.. The extrapolations, based on
the predictions oh>5 data, are in excellent agreement with

MC data.

Such a large number of approximations makes it possible
to apply the CAM analysis introduced by SuzyiKi. In the
vicinity of the critical point the order parametes,) and the
density of isolated particlesp() are estimated byp,
=al(pi—p) and p;— dna=al(pi—p), Wherep] denotes
the prediction for the critical point at the-point level. To
estimate thes critical exponents we have plotted the ampli-
%des of the mean-field resulta]{ anda}) as a function of

On= (pglpc)llz_ ( pc/p(r:])llzy

2

wherep, denotes the result of the MC simulation. Figure 2
shows the mean-field amplitudes in the absence of an exter-
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FIG. 1. Predictions foip, at different levels of approximation 3,
(n=2,..., 12) ath=0. The dashed line is the linear fit for
=6, ...,12data and the arrow shows the MC data. Inset: Discon- FIG. 2. CAM scaling of the critical mean-field coefficients for
tinuity in p, ath—0 as a function of the levels of approximation. the order parameterg, open squargsand the density of isolated
n=3,...,12-point levels are plotted. The dashed line correspondsarticles @,, crosses The dashed line corresponds to tite

to a power law with an exponeni~ 1.666. =0.276 exponent. The values af are multiplied by 1.1.
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[9]. Following Marqueset al. [9], we have calculated the
absorbing state selected by the system’s dynamics starting
from the same homogeneous initial state. However, different
initial particle concentrations were chosen to study the ro-
bustness of the final absorbing state in the inactive phase.
The initial concentration ranges froth, to 0.99. The results
of a six-point approximation are plotted in Fig. 3 for differ-
ent values of initial concentration &t=0. It suggests that
the absorbing state selected by the system’s dynamics de-
pends on the initial condition. Similar behavior may be ob-
served for all levels of approximation. The observed devia-
. X tion of curves increases further on increasingnd the level
0.1027 0.1031 0.1035 of approximation. Obviously, the stationary value of the con-
P centration becomes independent of the initial condition in the
active phase.
_ FI_G. 3. The station_ary yalue of particle C(_Jn_c_entration in the  \We have tried to apply a CAM analysis to the data ob-
inactive phase at the six-point levelat-0. The initial concentra-  tained from thesameinitial concentration for different levels
tions for the different curves are indicated. of approximation. Even in this case, the irregularity of the
nal source ki=0) for different levels of approximation. Us- Mean-field coefficients at different levels of approximation
ing different subsets of CAM-data the estimated exponent§0€s not allow one to extract the critical exponent. Briefly,
are 0.221, 0.246, 0.276, and 0.312. The dashed line corrél® present approximation does not support the existence of
sponds to thgg=0.276 DP exponent. Although the error bar Static critical behavior in the inactive phase. In the light of
is still large, the tendency to DP is straightforward. Thesgis prediction further intensive MC simulations are sug-
results confirm earlier MC observatiof]; namely, the or- 9ested to clarify the possible existencenattural absorbing
der parameter and the density of isolated particles can befates
described by the same power laws when the system ap- [N Summary, we have demonstrated that the present dy-
proaches the critical point from the active phase. At the sam@@mical mean-field approximatiorior large n) yield ad-
time the CAM analysis of mean-field data helps to under-€quate extrapolation to the limit—cc even in the presence
stand why the exponents agree. Figure 2 demonstrates thigt @n external particle source that causes nonanalytical be-
these two quantities are proportional to each other in théavior in the limith—0. According to this approximation
vicinity of the critical point.(In this plot 1.1} is compared the discontinuity ofp. displays power law decay. The appli-
with a,.) cation of QAM anaIyS|s demonstrates t.hat the densme_s of
In the presence of a sourca*0) the earlier MC simu- nearest-nelghbor palr_s_and |solated_part|cle§ are proportional
lation suggested a slightly modifigél=0.287 exponenf5]. to each othgr' in the vicinity of the critical pp!nt and'support\f,
Our mean-field data also become convergentfai, sug- fthe same critical exponents of these quantities. '_I'hls behavior
gesting an exponent close to that of the DP clags ('° certainly related to the fact that the extinct pairs can leave
=0.274+0.038 ath=10). However, the region i, is so extra solitary particles behind. Although our analysis has

small that the error bar of the estimated exponent is fouproved to be a useful tool for investigating stationary states

times larger than the predicted change of the MC result" the active phase, it does not confirm the occurrence of an
unambiguous critical behavior in the inactive phase where

Therefore, this method is incapable of distinguishing sucH’h > ¢ the f d d he initial
close exponents. the composition of the frozen state depends on the initial

As noted above, the large-cluster approximation makes jptate. We h_ope that the obscurit_y of the statianary inag:tive
possible to test the prediction static critical behavior of state will stimulate further MC simulations and theoretical

particle concentration in thimactive phase/9]. Such a criti- investigations.

cal behavior of a static quantity in the inactive phase hasThe author wishes to thank Ron Dickman, @y Szabo
already been observed in a different mofiE3]. In a previ-  and M. C. Marques for stimulating discussions. This research
ous MC study of the PCP model it was suggested that thgvas supported by the Hungarian National Research Fund
density of isolated particles follows a power lgf*'—p;  (OTKA) under Grant No. F-30449 and Bolyai Grant No.
«(p—pc)Pr for p>p,. in the absence of an external source (BO/0067/00.
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